Q1 (AQA AS SPECIMEN PAPER 2 Q4)

4	Selects an appropriate method – either differentiates, at least as far as: $\frac{dy}{dx} = 2x$ or commences completion of the square: $\left(x - \frac{5}{2}\right)^2 +$	AO1.1a	M1	$y = \left(x - \frac{5}{2}\right)^2 - \frac{25}{4} + a$ y minimised when squared bracket is 0 $\left(\frac{5}{2}, a - \frac{25}{4}\right)$ ALT $\frac{dy}{1} = 2x - 5$
	Fully differentiates and sets derivative equal to zero or fully completes square Allow one error	AO1.1a	M1	dx so $2x - 5 = 0$ for minimum $x = \frac{5}{2}$
	Obtains both coordinates	AO1.1b	A1	$y = \left(\frac{5}{2}\right)^2 - 5\left(\frac{5}{2}\right) + a = a - \frac{25}{4}$
	Total		3	

Q2 (AQA AS SPECIMEN PAPER 1 Q7)

Q	Marking Instructions	AO	Marks	Typical Solution
7	Explains that equal gradients implies that lines are parallel	AO2.4	E1	Parallel lines have equal gradient
	Finds the gradient of the given line CAO	AO1.1b	B1	$2x + 3y + 4 = 0 \implies y = -\frac{2}{3}x - \frac{4}{3}$ So gradient is $-\frac{2}{3}$
	Finds the gradient of the line through the 2 given points CAO	AO1.1b	B1	Gradient of line through (9, 4) and (3, 8) is $\frac{8-4}{3-9} = -\frac{2}{3}$
	Deduces that the two lines are parallel	AO2.2a	R1	So line with equation $2x + 3y + 4 = 0$ is parallel to the line joining the points with coordinates (9, 4) and (3, 8) as both have gradient $-\frac{2}{3}$
	Total		4	

YEAR 1 | WEEK 4 | FURTHER EXAM QUESTIONS – MARK SCHEME

Q3 (OCR JUNE 2018 AS PAPER 1 Q7)

(Question		Answer	Mks	AO	Guidance		
7	(i)	(b)	$a + \frac{1}{2}(c - a)$ or $c + \frac{1}{2}(a - c)$	M1	3.1a	a + $\frac{1}{2}$ their (a) or c - $\frac{1}{2}$ their (a)		
			$=\frac{1}{2}(a+c)$ or $\frac{1}{2}a+\frac{1}{2}c$	A1	1.1b	Correct ans without wking: M1A1		
				[2]				
	(ii)		$\overrightarrow{OB} = (\mathbf{a} + \mathbf{c})$	М1	3.1a	$\overrightarrow{PB} = \mathbf{a} + \frac{1}{2} (\mathbf{c} - \mathbf{a}) \text{ or } \mathbf{a} + \frac{1}{2} \text{ their } (\mathbf{i})(\mathbf{a}) \qquad \text{ or } \overrightarrow{PB} = \mathbf{c} - \frac{1}{2} \text{ their } (\mathbf{i})(\mathbf{a})$ $\text{ or } \mathbf{c} + \frac{1}{2} (\mathbf{a} - \mathbf{c})$		
						$(=\frac{1}{2}(\mathbf{a}+\mathbf{c}) \text{ oe}), \qquad \text{ft their (i)(a)}$ $\mathbf{NB} \overrightarrow{PB} = \frac{1}{2}(\mathbf{a}+\mathbf{c}) \text{ without justification:}$ $\mathbf{M0A0A0E0}$		
			$\Rightarrow \overrightarrow{OP} = \frac{1}{2} \overrightarrow{OB}$ Must see previous line $\Rightarrow P \text{ is midpt of } OB \text{ or } OPB \text{ is a straight line and } OP = PB \text{ Hence diagonals of }//m \text{ bisect one another}$	A1* ^{dep*} A1 E1 [4]	1.1 2.1 2.2a	$\Rightarrow PB = OP$ or similar with BP or BO dep M1A1A1		

Q4 (OCR AS PRACTICE PAPER 1 Q7)

7	(i)	(a)	$ \overrightarrow{OB} = \sqrt{1^2 + 2^2}$ Mag = $\sqrt{5}$ or 2.24 (3 sf)	M1 A1 [2]	1.2 1.1		
	Question		Answer	Marks	AO	Guidance	
		(b)	Direction (= $\tan^{-1}(0.5)$) = 27° & (180° + 27° or $\tan^{-1}(-0.5)$) = 207°	M1 A1f [2]	1.1a 1.1	ft their 27°	
7	(ii)		For max & min OC, C lies on OA $OC = OA \pm 2$ Max $OC = \sqrt{5} + 2$ or 4.24 (3 sf) Min $OC = \sqrt{5} - 2$ or 0.236 (3 sf)	M1 M1 A1 A1 [4]	2.1 3.1a 2.2a 1.1	May be implied, eg by diagram Their OA (from (i)) ± 2	